计算WebGL中的uniforms变量使用数

techbrood 发表于 2016-09-02 23:36:38

标签: webgl, uniforms

- +

在使用Three.js为人体模型加载皮肤材料时,启用了skinning:true的参数。

有时候会导致GL编译错误,提示“too many uniforms”。下面的文章有助于理解错误原因和检测uniforms的使用情况。

For a recent consulting project I was attempting to render some fairly complex skeletal animations in WebGL on Firefox and Chrome. I quickly ran into a situation where the animation was rendering on Linux and Mac computers, but not on Windows. All the test machines had up-to-date graphics drivers, but the Windows machines threw a “too many uniforms” error when attempting to link the shader programs. So what does this error mean, and how do we fix it? In this post I’ll share the results of my research that allowed me to get everything working.

Uniforms

So what is a uniform? According to the OpenGL wiki, a uniform is “a global GLSL variable declared with the ‘uniform’ storage qualifier.” To be a little more specific: your shader executes on the GPU, which is physically distinct from the rest of the computer, separated by a bus. This means there’s a very limited amount of data that can be shared quickly between the GPU and your web browser. A uniform variable is what lets you declare “this is data that is exposed externally for transport over the bus”, and there’s a specific API on the JavaScript/WebGL side that lets you get and set this data. For example, you might declare the following variables at the start of a GLSL vertex shader:

    uniform mat4 uMVMatrix;
    uniform mat4 uPMatrix;
    uniform vec3 someVector;
    varying vec4 vColor;

That shader has, you guessed it, three uniforms. Later, in your JavaScript program code, you might access, transform, and return one of the uniforms like this:

    // get a copy of our vec3 uniform
    var vec3Uni = gl.getUniformLocation(shaderProgram, "someVector");
    // increment the x component of the vector by 10
    vec3Uni[0] += 10;
    // write it back to the GPU
    gl.uniform3fv(shaderProgram, vec3Uni);

If you’ve ever used web workers, this data flow should be familiar to you. This is for good reason: we’re simply doing parallel computing here, but instead of the shader code running on a spawned worker thread, it’s running on the GPU.

How Many is Too Many?

So, we know what a uniform is: it’s data that’s transferred back and forth between the GPU. Because the GPU is physically distinct from the rest of the computer, we are severely limited in the amount of data that we can quickly push back and forth over the bus between the CPU and the GPU. So we need to watch our uniform usage very closely, and we need to understand that different combinations of graphics cards and graphics drivers allow for different uniform caps.

When it seems like I’m hitting a performance limit, the first thing I do is benchmark my system. Fortunately, webgl-bench is a great website that can benchmark your WebGL performance in seconds, giving you a lot of statistics that can be valuable for debugging. For this problem in particular, we’re interested in the value returned forMAX_VERTEX_UNIFORM_VECTORS. As you might imagine, having more active uniforms than the maximum is what causes a “too many uniforms” error.

Running the benchmark on Mac, Linux, and Windows machines highlighted something odd: while most of the Mac and Linux machines capped out at 1024 uniforms, the Windows computers supported only 256 vertex uniforms, even if they had amazing graphics cards and the latest drivers.

This is due to a peculiarity in how Chrome and Firefox render WebGL. In Mac and Linux, the browsers render WebGL directly, using native OpenGL drivers. The problem on Windows is that the native OpenGL drivers are notoriously unstable, causing sometimes massive performance hits. To avoid these problems, the Windows versions of both browsers default to using ANGLE, which translates OpenGL ES 2.0 API calls to DirectX 9 or DirectX 11 API calls.

(Frank Olivier of the IE GPU team informs me that IE11 WebGL supports more than 256 vertex uniforms because it’s already using the DX11 runtime.)

The problem is that the ANGLE configuration currently used by both browsers uses DirectX 9. The DX9 configuration imposes an artificial cap of 256 vertex uniforms in use at any given time, no matter how good the graphics card is. Users can manually disable ANGLE (more info here) but it’s an onerous process only meant for developers; you can’t expect an end user to do it.

Fortunately, an upcoming Chrome release (version 34 or possibly earlier) is going to default to using DirectX 11, which should increase the cap to 1024 maximum vertex uniforms. You can follow the tracking issue for this feature here. Firefox is actively looking into doing the same, but they don’t have a timetable yet.

Counting the Uniforms

So now I needed to figure out how many uniforms I was using with my complex model. Obviously I was using more than 256, but exactly how many more?

For simple shaders you can manually count the number of uniforms by visually inspecting your script. But for most combinations of shaders and dynamic scenes, it’s likely that the number of uniforms in use will scale with the complexity and the number of the models being rendered. We need to dynamically count the active uniforms.

After a bunch of research, I wrote a function does this for you. You pass it a shader program and it returns an object containing useful data.

Here’s the code for the function:

function getProgramInfo(gl, program) {
    var result = {
        attributes: [],
        uniforms: [],
        attributeCount: 0,
        uniformCount: 0
    },
        activeUniforms = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS),
        activeAttributes = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES);

    // Taken from the WebGl spec:
    // http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.14
    var enums = {
        0x8B50: 'FLOAT_VEC2',
        0x8B51: 'FLOAT_VEC3',
        0x8B52: 'FLOAT_VEC4',
        0x8B53: 'INT_VEC2',
        0x8B54: 'INT_VEC3',
        0x8B55: 'INT_VEC4',
        0x8B56: 'BOOL',
        0x8B57: 'BOOL_VEC2',
        0x8B58: 'BOOL_VEC3',
        0x8B59: 'BOOL_VEC4',
        0x8B5A: 'FLOAT_MAT2',
        0x8B5B: 'FLOAT_MAT3',
        0x8B5C: 'FLOAT_MAT4',
        0x8B5E: 'SAMPLER_2D',
        0x8B60: 'SAMPLER_CUBE',
        0x1400: 'BYTE',
        0x1401: 'UNSIGNED_BYTE',
        0x1402: 'SHORT',
        0x1403: 'UNSIGNED_SHORT',
        0x1404: 'INT',
        0x1405: 'UNSIGNED_INT',
        0x1406: 'FLOAT'
    };

    // Loop through active uniforms
    for (var i=0; i < activeUniforms; i++) {
        var uniform = gl.getActiveUniform(program, i);
        uniform.typeName = enums[uniform.type];
        result.uniforms.push(uniform);
        result.uniformCount += uniform.size;
    }

    // Loop through active attributes
    for (var i=0; i < activeAttributes; i++) {
        var attribute = gl.getActiveAttrib(program, i);
        attribute.typeName = enums[attribute.type];
        result.attributes.push(attribute);
        result.attributeCount += attribute.size;
    }

    return result;
}

It returns an object containing the following data:

  • uniformCount – the total number of currently active uniforms in this program

  • uniforms – an array containing the name, size, type, and typeName of the each active uniform. In particular, typeName can be useful since otherwise you’d have to look up the integer type value and cross reference it to the enum declarations in the webGL spec

  • attributeCount, attributes – same as above, but for attributes (attributes are out of scope for this article, but are similarly capped and nice to keep count of)

Here’s some sample output using console.table (more info on that function here) to show the information from the returned object’s uniforms array. This is data from my original, complex model:

Looking at this I was able to immediately discern that we had 288 active vertex uniforms, and most of them were in the joint matrix (aka the complexity of our model’s skeleton). This helped me tell our artist that we needed to reduce the number of joints in the model by about 20% for it to work on Windows machines.

原文链接:

https://bocoup.com/weblog/counting-uniforms-in-webgl

possitive(12) views12132 comments3

发送私信

最新评论

王露 2020-12-23 14:52:19

fda


王露 2020-12-23 14:52:15

fdsa


王露 2020-12-23 14:52:11

fdaf


请先 登录 再评论.
相关文章
  • 微信公众号在线生成二维码带参数怎么搞?

    带参数二维码是微信公众号渠道二维码的一种实现
    微信的带参数二维码有两种,一种是临时二维码,一种是永久二维码,但是永久二维码的生成是有个数限制的,微...

  • CentOS6 Apache2.2多站点HTTPS配置

    可以使用letsencrypt(certbot)免费证书服务。支持多系统、多站点和多目录,支持wildcard(通配符域名),90天生效,可用定时任务自动更新。需要注意一点的是apache2.4以下版本需要在默认的ssl配置中添加如下的指令:NameVirtualHost

  • 2019年NodeJS框架Koa和Express选型比较

    Koa和Express都是NodeJS的主流应用开发框架。
    Express是一个完整的nodejs应用框架。Koa是由Express团队开发的,但是它有不同的关注点。Koa致力于核心中间件...

  • 常用光照类型基本概念工作原理及其计算公式

    在三维场景中,原理上物体的渲染效果取决于光照与物体表面的相互作用,对于渲染程序而言,可以通过把一些数学公式应用于像素着色来实现,从而模拟出真实生活中的...

  • CSS3原生变量(Native Variables)新特性简介

    对Web开发者来说,一个盼望已久的特性是CSS终于支持原生变量了!
    变量是程序语言中用来解决代码重复和进行表达式计算的关键概念(想想数学方程式中的x)。...

  • 函数式JavaScript编程基础概念:Curry和Partial Application

    本文介绍JS函数式编程中的两个概念:柯里(Curry)和部分应用程序(Partial Application)。什么是应用程序(Application)将函数应用于其参数以产生返回值的过...

  • HTTP1.1协议现状、问题和解决方案

    HTTP的现状最早的HTTP协议非常简单,只能用来传送文本,方法也只有GET,后来逐步发展到1.1,能够支持多种MIME格式数据(如文本、文件),支持GET,POST,HEAD,OPTI...

  • 纹理基础知识和过滤模式详解

    1、 为什么在纹理采样时需要texture filter(纹理过滤)。
    我们的纹理是要贴到三维图形表面的,而三维图形上的pixel中心和纹理上的texel中心并不一至(pixe...

  • Blender2.7 快捷键一览表

    通用操作
    停止当前操作:ESC
    快捷搜索:SPACE撤销:ctrl+z重做:ctrl+shift+z渲染:F12
    单选:鼠标右键(RMB)全选:A
    框选:B
    刷选:...

  • HTML网页布局:静态、自适应、流式、响应式

    静态布局(Static Layout)即传统Web设计,对于PC设计一个Layout,在屏幕宽高有调整时,使用横向和竖向的滚动条来查阅被遮掩部分;对于移动设备,单独设计一个布...

  • 使用requestAnimationFrame和Canvas给按钮添加绕边动画

    要给按钮添加酷炫的绕边动画,可以使用Canvas来实现。基本的思路是创建一个和按钮大小相同的Canvas元素,内置在按钮元素中。然后在Canvas上实现边线环绕的动画。...

  • 更多...