深入理解JS和CSS3动画性能问题和技术选择
本文对比了JS及其框架和CSS3的动画性能,并深入剖析了其内在原因。
技术结论大致如下:
1. jQuery出于设计原因,在动画性能上表现最差
2. CSS3由于把动画逻辑推给了浏览器,优化了内存消耗、DOM操作和默认利用了RAF,所以要比jQuery动画性能更好
3. CSS3可能会引起浏览器主线程和复合器线程之间过度数据交互,从而导致性能下降
4. 纯JS实现的动画,在利用RAF和注意布局摆动处理时,可以获得媲美CSS3的动画性能,而在浏览器兼容性上比CSS3更好
应用选型建议:
1. 对于简单页面动画,建议优先选择CSS3动画
原文链接:https://davidwalsh.name/css-js-animation
jQuery
Let's start with the basics: JavaScript and jQuery are falsely conflated. JavaScript animation is fast. jQuery slows it down. Why? Because — despite jQuery being tremendously powerful — it was never jQuery's design goal to be a performant animation engine:
jQuery cannot avoid layout thrashing due to its codebase that serves many purposes beyond animation.
jQuery's memory consumption frequently triggers garbage collections thatmomentarily freeze animations.
jQuery uses setInterval instead of requestAnimationFrame (RAF) in order to protect novices from themselves.
Note that layout thrashing is what causes stuttering at the start of animations, garbage collection is what causes stuttering during animations, and the absence of RAF is what generally produces low frame rates.
Implementation Examples
Avoiding layout thrashing consists of simply batching together DOM queries and DOM updates:
var currentTop, currentLeft; /* With layout thrashing. */ currentTop = element.style.top; /* QUERY */ element.style.top = currentTop + 1; /* UPDATE */ currentLeft = element.style.left; /* QUERY */ element.style.left = currentLeft + 1; /* UPDATE */ /* Without layout thrashing. */ currentTop = element.style.top; /* QUERY */ currentLeft = element.style.left; /* QUERY */ element.style.top = currentTop + 1; /* UPDATE */ element.style.left = currentLeft + 1; /* UPDATE */
Queries that take place after an update force the browser to recalculate the page's computed style data (while taking the new update's effects into consideration). This produces significant overhead for animations that are running over tiny intervals of just 16ms.
Similarly, implementing RAF doesn't necessitate a significant reworking of your existing codebase. Let's compare the basic implementation of RAF against that of setInterval:
var startingTop = 0; /* setInterval: Runs every 16ms to achieve 60fps (1000ms/60 ~= 16ms). */ setInterval(function() { /* Since this ticks 60 times a second, we divide the top property's increment of 1 unit per 1 second by 60. */ element.style.top = (startingTop += 1/60); }, 16); /* requestAnimationFrame: Attempts to run at 60fps based on whether the browser is in an optimal state. */ function tick () { element.style.top = (startingTop += 1/60); } window.requestAnimationFrame(tick);
RAF produces the biggest possible boost to animation performance that you could make with a single change to your code.
CSS Transitions
CSS transitions outperform jQuery by offloading animation logic to the browser itself, which is efficient at 1) optimizing DOM interaction and memory consumption to avoid stuttering, 2) leveraging the principles of RAF under the hood and 3) forcing hardware acceleration (leveraging the power of the GPU to improve animation performance).
The reality, however, is that these optimizations can also be performed directly within JavaScript. GSAP has been doing it for years. Velocity.js, a new animation engine, not only leverages these same techniques but also goes several steps beyond -- as we'll explore shortly.
Coming to terms with the fact that JavaScript animation can rival CSS animation libraries is only step one in our rehab program. Step two is realizing that JavaScript animation can actually be faster than them.
Let's start by examining the weaknesses of CSS animation libraries:
Transitions' forced hardware acceleration taxes GPU's, resulting in stuttering and banding in high-stress situations. These effects are exacerbated on mobile devices. (Specifically, the stuttering is a result of the overhead that occurs when data is transferred between the browser's main thread and its compositor thread. Some CSS properties, like transforms and opacity, are immune to this overhead.) Adobe elaborates on this issue here.
Transitions do not work below Internet Explorer 10, causing accessibility problems for desktop sites since IE8 and IE9 remain very popular.
Because transitions aren't natively controlled by JavaScript (they are merely triggered by JavaScript), the browser does not know how to optimize transitions in sync with the JavaScript code that manipulates them.
Conversely: JavaScript-based animation libraries can decide for themselves when to enable hardware acceleration, they inherently work across all versions of IE, and they're perfectly suited for batched animation optimizations.
My recommendation is to use raw CSS transitions when you're exclusively developing for mobile and your animations consist solely of simple state changes. In such circumstances, transitions are a performant and native solution that allow you to retain all animation logic inside your stylesheets and avoid bloating your page with JavaScript libraries. However, if you're designing intricate UI flourishes or are developing an app with a stateful UI, always use an animation library so that your animations remain performant and your workflow remains manageable. One library in particular that does a fantastic job at managing CSS transitions is Transit.
JavaScript Animation
Okay, so JavaScript can have the upper hand when it comes to performance. But exactly how much faster can JavaScript be? Well — to start — fast enough to build an intense 3D animation demo that you typically only see built with WebGL. And fast enough to build amultimedia teaser that you typically only see built with Flash or After Effects. And fast enough to build a virtual world that you typically only see built with canvas.
To directly compare the performance of leading animation libraries, including Transit (which uses CSS transitions), head on over to Velocity's documentation at VelocityJS.org.
The question remains: How exactly does JavaScript reach its high levels of performance? Below is a short list of optimizations that JavaScript-based animation is capable of performing:
Synchronizing the DOM → tween stack across the entirety of the animation chain in order to minimize layout thrashing.
Caching property values across chained calls in order to minimize the occurrence of DOM querying (which is the Achilles' heel of performant DOM animation).
Caching unit conversion ratios (e.g. px to %, em, etc.) across sibling elements in the same call.
Skipping style updating when updates would be visually imperceptible.
Revisiting what we learned earlier about layout thrashing, Velocity.js leverages these best practices to cache the end values of an animation to be reused as the start values of the ensuing animation — thus avoiding requerying the DOM for the element's start values:
$element /* Slide the element down into view. */ .velocity({ opacity: 1, top: "50%" }) /* After a delay of 1000ms, slide the element out of view. */ .velocity({ opacity: 0, top: "-50%" }, { delay: 1000 });
In the above example, the second Velocity call knows that it should automatically start with an opacity value of 1 and a top value of 50%.
The browser could ultimately perform many of these same optimizations itself, but doing so would entail aggressively narrowing the ways in which animation code could be crafted by the developer. Accordingly, for the same reason that jQuery doesn't use RAF (see above), browsers would never impose optimizations that have even a tiny chance of breaking spec or deviating from expected behavior.
Finally, let's compare the two JavaScript animation libraries (Velocity.js and GSAP) against one another.
GSAP is a fast, richly-featured animation platform. Velocity is a lightweight tool for drastically improving UI animation performance and workflow.
GSAP requires a licensing fee for various types of businesses. Velocity is freely open-sourced via the ultra-permissive MIT license.
Performance-wise, GSAP and Velocity are indistinguishable in real-world projects.
My recommendation is to use GSAP when you require precise control over timing (e.g. remapping, pause/resume/seek), motion (e.g. bezier curve paths), or complex grouping/sequencing. These features are crucial for game development and certain niche applications, but are less common in web app UI's.
Velocity.js
Referencing GSAP's rich feature set is not to imply that Velocity itself is light on features. To the contrary. In just 7Kb when zipped, Velocity not only replicates all the functionality of jQuery's $.animate()
, but it also packs in color animation, transforms, loops, easings, class animation, and scrolling.
In short, Velocity is the best of jQuery, jQuery UI, and CSS transitions combined.
Further, from a convenience viewpoint, Velocity uses jQuery's $.queue()
method under the hood, and thus interoperates seamlessly with jQuery's $.animate()
, $.fade()
, and $.delay()
functions. And, since Velocity's syntax is identical to $.animate()
's, none of your page's code needs to change.
Let's take a quick look at Velocity.js. At a basic level, Velocity behaves identically to$.animate()
:
$element.delay(1000) /* Use Velocity to animate the element's top property over a duration of 2000ms. */ .velocity({ top: "50%" }, 2000) /* Use a standard jQuery method to fade the element out once Velocity is done animating top. */ .fadeOut(1000);
At its most advanced level, complex scrolling scenes with 3D animations can be created — with merely two simple lines of code:
$element /* Scroll the browser to the top of this element over a duration of 1000ms. */ .velocity("scroll", 1000) /* Then rotate the element around its Y axis by 360 degrees. */ .velocity({ rotateY: "360deg" }, 1000);
Wrapping Up
Velocity's goal is to remain a leader in DOM animation performance and convenience. This article has focused on the former. Head on over to VelocityJS.org to learn more about the latter.
Before we conclude, remember that a performant UI is about more than just choosing the right animation library. The rest of your page should also be optimized. Learn more from these fantastic Google talks:


最新评论
- 相关文章
微信公众号在线生成二维码带参数怎么搞?
带参数二维码是微信公众号渠道二维码的一种实现
微信的带参数二维码有两种,一种是临时二维码,一种是永久二维码,但是永久二维码的生成是有个数限制的,微...CentOS6 Apache2.2多站点HTTPS配置
可以使用letsencrypt(certbot)免费证书服务。支持多系统、多站点和多目录,支持wildcard(通配符域名),90天生效,可用定时任务自动更新。需要注意一点的是apache2.4以下版本需要在默认的ssl配置中添加如下的指令:NameVirtualHost
2019年开源WebRTC媒体服务器选型比较
什么是WebRTC服务器?在WebRTC的早期开始,该技术的主要卖点之一是它允许点对点(浏览器到浏览器)通信,几乎没有服务器的干预,服务器通常仅用于信令(比如用于...
HTML5 And Canvas 2D Specs Are Now Feature Complete, First HTML 5.1 Working Draft Published
We’ve been writing about HTML5 for quite a while, but, until today, the actual HTML5 specs and standards were still moving targets. Now, however, the...
HTML5动画背后的数学2 - 仿生智能算法综述
深度贴图(depth map)概念简介和生成流程
Depth map 深度图是一张2D图片,每个像素都记录了从视点(viewpoint)到遮挡物表面(遮挡物就是阴影生成物体)的距离,这些像素对应的顶点对于观察者而言是“可...
如何使用Three.js加载obj和mtl文件
OBJ和MTL是3D模型的几何模型文件和材料文件。在最新的three.js版本(r78)中,以前的OBJMTLLoader类已废弃。现在要加载OBJ和MTL文件,需要结合OBJLoader和MTLLoade...
WebVR简介和常用资源链接
什么是WebVR这是一个实验性的JavaScript API,提供了在用户网页浏览器中访问虚拟现实设备的统一接口。当前主流VR设备如Oculus Rift DK2、谷歌的CardBoard、三星...
WebGL入门教程4 - 使用纹理贴图(Texture Map)
3D建模和纹理贴图的关系就好比人体和皮肤(或着装)的关系,3D建模用来处理空间属性,而贴图适合用来处理细腻的表面属性。如果不使用贴图,而想在表面达到足够的...
如何基于Canvas来模拟真实雨景Part1:预备知识和创建基本对象
jQuery Ribbles - 基于WebGL的水面涟漪动效插件
使用jQuery
使用requestAnimationFrame和Canvas给按钮添加绕边动画
要给按钮添加酷炫的绕边动画,可以使用Canvas来实现。基本的思路是创建一个和按钮大小相同的Canvas元素,内置在按钮元素中。然后在Canvas上实现边线环绕的动画。...
SVG过滤器feColorMatrix矩阵变换效果用法详解
在计算机图形学(数学)中,矩阵乘法可用于把空间向量进行几何变换。我们可以把颜色的值(RGBA)表示成一个四维空间向量:color = (r, g, b, a);那么就可以应用...
如何使用纯CSS3实现一个3D泡沫
要实现一个逼真的泡沫,涉及到比较复杂的光学/物理学知识。我们这里先简化下问题,实现一个相对简单而足够实用的泡沫元素。我们可以把基础的泡沫元素应用在很多场景中,比如水景、泡咖啡、啤酒甚至火焰特效中。泡沫首先是一个圆形元素.bubble
在PHP网页程序中执行Sass/Compass命令
我们需要在wow云开发平台支持sass/compass等预编译样式语言,为此我们首先尝试了scssphp扩展,但是在支持最新语法上,经常会出现异常。所以我们采用了代理的方式...
更多...