纹理基础知识和过滤模式详解

iefreer 发表于 2016-07-16 15:54:06

标签: texture, webgl, filter, mode

- +

1、 为什么在纹理采样时需要texture filter(纹理过滤)。


我们的纹理是要贴到三维图形表面的,而三维图形上的pixel中心和纹理上的texel中心并不一至(pixel不一定对应texture上的采样中心texel),大小也不一定一至。当纹理大于三维图形表面时,导至一个像素被映射到许多纹理像素上;当维理小于三维图形表面时,许多个像素都映射到同一纹理。


当这些情况发生时,贴图就会变得模糊或发生错位。要解决此类问题,必须通过技术平滑texel和pixel之间的对应。这种技术就是纹理滤波。


不同的过滤模式,计算复杂度不一样,会得到不同的效果。过滤模式由简单到复杂包括:Nearest Point Sampling(最近点采样),Bilinear(双线性过滤)、Trilinear(三线性过滤)、Anisotropic Filtering(各向异性过滤)。


在了解这些之前,有必要了解什么是多级纹理贴图(MipMap)和什么是各向同性,各向异性。


2、 什么是MipMap?

Mipmap由Lance Williams 在1983的一篇文章“Pyramidal parametrics”中提出。Wiki中有很详细的介绍(http://en.wikipedia.org/wiki/Mipmap ) . 比如一张256X256的图,在长和宽方向每次减少一倍,生成:128X128,64X64,32X32,16X16,8X8,4X4,2X2,1X1,八张图,组成MipMap,如下图示。

Mipmap早已被硬件支持,硬件会自动为创建的Texture生成mipmap的各级。在D3D的API:CreateTexture中有一个参数levels,就是用于指定生成mipmap到哪个级别,当不指定时就一直生成到1X1。


3、 什么是各向同性和各向异性?

当需要贴图的三维表面平行于屏幕(viewport),则是各向同性的。当要贴图的三维表面与屏幕有一定角度的倾斜,则是各向异性的。


也可以这样理解,当一个texture贴到三维表面上从Camera看来没有变形,投射到屏幕空间中后U方向和V方向比例仍然是一样的,便可以理解成各向同性。反之则认为是各向异性。


4、 Nearest Point Sampling(最近点采样)

这个最简单,每个像素的纹理坐标,并不是刚好对应Texture上的一个采样点texel,怎么办呢?最近点采样取最接近的texel进行采样。


当纹理的大小与贴图的三维图形的大小差不多时,这种方法非常有效和快捷。如果大小不同,纹理就需要进行放大或缩小,这样,结果就会变得矮胖、变形或模糊。


5、 Bilinear(双线性过滤)

双线性过滤以pixel对应的纹理坐标为中心,采该纹理坐标周围4个texel的像素,再取平均,以平均值作为采样值。


双线性过滤像素之间的过渡更加平滑,但是它只作用于一个MipMap Level,它选取texel和pixel之间大小最接近的那一层MipMap进行采样。当和pixel大小匹配的texel大小在两层Mipmap level之间时,双线性过滤在有些情况效果就不太好。于是就有了三线性过滤。


6、 Trilinear(三线性过滤)

三线性过滤以双线性过滤为基础。会对pixel大小与texel大小最接近的两层Mipmap level分别进行双线性过滤,然后再对两层得到的结果进生线性插值。


三线性过滤在一般情况下效果非常理想了。但是到目前为止,我们均是假设是texture投射到屏幕空间是各向同性的。但是当各向异性的情况时,效果仍然不理想,于是产生了Anisotropic Filtering(各向异性过滤)。


7、 Anisotropic Filtering(各向异性过滤)

先看效果,左边的图采用三线性过滤,右边的图采用各向异性过滤。

各向同性的过滤在采样的时候,是对正方形区域里行采样。各向异性过滤把纹理与屏幕空间的角度这个因素考虑时去。简单地说,它会考滤一个pixel(x:y=1:1)对应到纹理空间中在u和v方向上u和v的比例关系,当u:v不是1:1时,将会按比例在各方向上采样不同数量的点来计算最终的结果(这时采样就有可能是长方形区域)。

我们一般指的Anisotropic Filtering(AF)均是基于三线过滤的Anisotropic Filtering,因此当u:v不为1:1时,则Anisotropic Filtering比Trilinear需要采样更多的点,具体要采多少,取决于是多少X的AF,现在的显卡最多技持到16X AF。

当开启16X AF的时候,硬件并不是对所有的texture采样都用16X AF,而是需要先计算屏幕空间与纹理空间的夹角(量化后便是上面所说的u:v),只有当夹角大到需要16X时,才会真正使用16X.

如果想了解AF的实现原理,可以查阅此篇Paper: “Implementing an anisotropic texture filter”. 现在AF都是硬件实现,因此只有少数人才清楚AF的具体实现,也可以由Pixel Shader来实现AF,当然性能远不如使用硬件来完成。

8、 各过滤模式性能比较。

下表是各种过滤模式采一个pixel需要sample的次数:

类型采样数
Nearest Point Sampling1
Bilinear4
Trilinear8
Anisotropic Filtering 4X32
Anisotropic Filtering 16X128

一般而言,采样数越多,效果最好,但具体使用时要综合考虑性能。

possitive(11) negative(0) views9763 comments0
私信 收藏 分享
分享到

发送私信

最新评论

请先 登录 再评论.
相关文章
  • 谷歌ARCore技术特性简介

    谷歌美国时间2017.8.29号刚发布了ARCore预览版,这是一个类似于苹果ARKit的增强现实SDK,在此之前,谷歌虽然已投资AR平台Tango,但由于需要特定的硬件和传感器,...

  • WebGL Roadmap

    Unity 5.0 shipped with a working preview of our WebGL technology in March this year. Since then, Google has disabled (by default) NPAPI support in the...

  • JavaScript语言多编程范式简介

    和C++等语言类似,JS支持多范式(paradigms)编程。我们常常混合这些范式来完成一些大型Web项目。JS支持3种编程范式:命令式、面向对象和函数式。命令式(Imperative JavaScript)命令式就是简单的从上而下完成任务,流水账过程式编码风格:function

  • Web界面编程状态变化和JS开发框架(React/Angular/Ember)

    UI编程中的一个关键课题就是界面组件化(可复用)以及组件状态管理。稍早一些的windows程序员可能接触过MFC,其界面编程中有一个DDX(DoDataExchange)的机制,...

  • 使用HTML5 FileReader和Canvas压缩用户上传的图片

    手机用户拍的照片通常会有2M以上,这对服务器带宽产生较大压力。因此在某些应用下(对图片要求不那么高)我们可以在客户端来压缩图片,然后再提交给服务器。总体...

  • WebGL 纹理映射模式以及WRAP_S | WRAP_T参数详解

    我们在纹理滤镜一文中已经说明了2个重要的纹理参数,用来定义对象缩放时纹理的处理方式:GL_TEXTURE_MIN_FILTERGL_TEXTURE_MAG_FILTER本文讲解其余几个纹理参数...

  • 如何使用WebGL实现空气高温热变形动画特效

    我们在炎炎夏日,或者在火堆旁,经常会观察到热源周围空气的不稳定波动现象。本文将讲解如何通过WebGL来实现这个特效。该效果可用于热变形、波浪、水面波光等场...

  • 使用Canvas绘制完美的不完美圆形

    真实世界是不完美的,当我们需要模拟真实世界时,经常需要引入不完美/不规则的形状。比如陨石、雨滴、行星、树叶、绵延的海岸线、云朵等。本文介绍如何基于Canva...

  • 使用top/left/margin和CSS3 translate两种方法实现标题居中的性能差异详解

    要实现标题全屏居中(同时在垂直和水平方向居中),有若干种方法,包括使用弹性布局、表格单元、绝对定位、自动外边距和CSS3平移变换等。你可能已经使用了这些方...

  • jQuery Ribbles - 基于WebGL的水面涟漪动效插件

    使用jQuery

  • 如何使用纯CSS3实现一个3D泡沫

    要实现一个逼真的泡沫,涉及到比较复杂的光学/物理学知识。我们这里先简化下问题,实现一个相对简单而足够实用的泡沫元素。我们可以把基础的泡沫元素应用在很多场景中,比如水景、泡咖啡、啤酒甚至火焰特效中。泡沫首先是一个圆形元素.bubble

  • 在PHP网页程序中执行Sass/Compass命令

    我们需要在wow云开发平台支持sass/compass等预编译样式语言,为此我们首先尝试了scssphp扩展,但是在支持最新语法上,经常会出现异常。所以我们采用了代理的方式...

  • 更多...