计算WebGL中的uniforms变量使用数
在使用Three.js为人体模型加载皮肤材料时,启用了skinning:true的参数。
有时候会导致GL编译错误,提示“too many uniforms”。下面的文章有助于理解错误原因和检测uniforms的使用情况。
For a recent consulting project I was attempting to render some fairly complex skeletal animations in WebGL on Firefox and Chrome. I quickly ran into a situation where the animation was rendering on Linux and Mac computers, but not on Windows. All the test machines had up-to-date graphics drivers, but the Windows machines threw a “too many uniforms” error when attempting to link the shader programs. So what does this error mean, and how do we fix it? In this post I’ll share the results of my research that allowed me to get everything working.
Uniforms
So what is a uniform? According to the OpenGL wiki, a uniform is “a global GLSL variable declared with the ‘uniform’ storage qualifier.” To be a little more specific: your shader executes on the GPU, which is physically distinct from the rest of the computer, separated by a bus. This means there’s a very limited amount of data that can be shared quickly between the GPU and your web browser. A uniform variable is what lets you declare “this is data that is exposed externally for transport over the bus”, and there’s a specific API on the JavaScript/WebGL side that lets you get and set this data. For example, you might declare the following variables at the start of a GLSL vertex shader:
uniform mat4 uMVMatrix; uniform mat4 uPMatrix; uniform vec3 someVector; varying vec4 vColor;
That shader has, you guessed it, three uniforms. Later, in your JavaScript program code, you might access, transform, and return one of the uniforms like this:
// get a copy of our vec3 uniform var vec3Uni = gl.getUniformLocation(shaderProgram, "someVector"); // increment the x component of the vector by 10 vec3Uni[0] += 10; // write it back to the GPU gl.uniform3fv(shaderProgram, vec3Uni);
If you’ve ever used web workers, this data flow should be familiar to you. This is for good reason: we’re simply doing parallel computing here, but instead of the shader code running on a spawned worker thread, it’s running on the GPU.
How Many is Too Many?
So, we know what a uniform is: it’s data that’s transferred back and forth between the GPU. Because the GPU is physically distinct from the rest of the computer, we are severely limited in the amount of data that we can quickly push back and forth over the bus between the CPU and the GPU. So we need to watch our uniform usage very closely, and we need to understand that different combinations of graphics cards and graphics drivers allow for different uniform caps.
When it seems like I’m hitting a performance limit, the first thing I do is benchmark my system. Fortunately, webgl-bench is a great website that can benchmark your WebGL performance in seconds, giving you a lot of statistics that can be valuable for debugging. For this problem in particular, we’re interested in the value returned forMAX_VERTEX_UNIFORM_VECTORS. As you might imagine, having more active uniforms than the maximum is what causes a “too many uniforms” error.
Running the benchmark on Mac, Linux, and Windows machines highlighted something odd: while most of the Mac and Linux machines capped out at 1024 uniforms, the Windows computers supported only 256 vertex uniforms, even if they had amazing graphics cards and the latest drivers.
This is due to a peculiarity in how Chrome and Firefox render WebGL. In Mac and Linux, the browsers render WebGL directly, using native OpenGL drivers. The problem on Windows is that the native OpenGL drivers are notoriously unstable, causing sometimes massive performance hits. To avoid these problems, the Windows versions of both browsers default to using ANGLE, which translates OpenGL ES 2.0 API calls to DirectX 9 or DirectX 11 API calls.
(Frank Olivier of the IE GPU team informs me that IE11 WebGL supports more than 256 vertex uniforms because it’s already using the DX11 runtime.)
The problem is that the ANGLE configuration currently used by both browsers uses DirectX 9. The DX9 configuration imposes an artificial cap of 256 vertex uniforms in use at any given time, no matter how good the graphics card is. Users can manually disable ANGLE (more info here) but it’s an onerous process only meant for developers; you can’t expect an end user to do it.
Fortunately, an upcoming Chrome release (version 34 or possibly earlier) is going to default to using DirectX 11, which should increase the cap to 1024 maximum vertex uniforms. You can follow the tracking issue for this feature here. Firefox is actively looking into doing the same, but they don’t have a timetable yet.
Counting the Uniforms
So now I needed to figure out how many uniforms I was using with my complex model. Obviously I was using more than 256, but exactly how many more?
For simple shaders you can manually count the number of uniforms by visually inspecting your script. But for most combinations of shaders and dynamic scenes, it’s likely that the number of uniforms in use will scale with the complexity and the number of the models being rendered. We need to dynamically count the active uniforms.
After a bunch of research, I wrote a function does this for you. You pass it a shader program and it returns an object containing useful data.
Here’s the code for the function:
function getProgramInfo(gl, program) { var result = { attributes: [], uniforms: [], attributeCount: 0, uniformCount: 0 }, activeUniforms = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS), activeAttributes = gl.getProgramParameter(program, gl.ACTIVE_ATTRIBUTES); // Taken from the WebGl spec: // http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.14 var enums = { 0x8B50: 'FLOAT_VEC2', 0x8B51: 'FLOAT_VEC3', 0x8B52: 'FLOAT_VEC4', 0x8B53: 'INT_VEC2', 0x8B54: 'INT_VEC3', 0x8B55: 'INT_VEC4', 0x8B56: 'BOOL', 0x8B57: 'BOOL_VEC2', 0x8B58: 'BOOL_VEC3', 0x8B59: 'BOOL_VEC4', 0x8B5A: 'FLOAT_MAT2', 0x8B5B: 'FLOAT_MAT3', 0x8B5C: 'FLOAT_MAT4', 0x8B5E: 'SAMPLER_2D', 0x8B60: 'SAMPLER_CUBE', 0x1400: 'BYTE', 0x1401: 'UNSIGNED_BYTE', 0x1402: 'SHORT', 0x1403: 'UNSIGNED_SHORT', 0x1404: 'INT', 0x1405: 'UNSIGNED_INT', 0x1406: 'FLOAT' }; // Loop through active uniforms for (var i=0; i < activeUniforms; i++) { var uniform = gl.getActiveUniform(program, i); uniform.typeName = enums[uniform.type]; result.uniforms.push(uniform); result.uniformCount += uniform.size; } // Loop through active attributes for (var i=0; i < activeAttributes; i++) { var attribute = gl.getActiveAttrib(program, i); attribute.typeName = enums[attribute.type]; result.attributes.push(attribute); result.attributeCount += attribute.size; } return result; }
It returns an object containing the following data:
uniformCount – the total number of currently active uniforms in this program
uniforms – an array containing the name, size, type, and typeName of the each active uniform. In particular, typeName can be useful since otherwise you’d have to look up the integer type value and cross reference it to the enum declarations in the webGL spec
attributeCount, attributes – same as above, but for attributes (attributes are out of scope for this article, but are similarly capped and nice to keep count of)
Here’s some sample output using console.table (more info on that function here) to show the information from the returned object’s uniforms array. This is data from my original, complex model:
Looking at this I was able to immediately discern that we had 288 active vertex uniforms, and most of them were in the joint matrix (aka the complexity of our model’s skeleton). This helped me tell our artist that we needed to reduce the number of joints in the model by about 20% for it to work on Windows machines.
原文链接:
https://bocoup.com/weblog/counting-uniforms-in-webgl


- 相关文章
3D感知和建模关键硬件技术:双目、3D结构光和TOF
无论VR、AR和3D打印,其核心技术包含3D成像和建模。而3D建模属于劳动密集型的工作,耗时耗力,凡这类工作都会是被新技术革命的地方,自动3D建模技术就是为了解决...
ARCore基本概念和工作原理简介
谷歌的WebAROnARCore项目基于Android手机提供的ARCore增强现实引擎,要了解WebAROnARCore,需要先了解ARCore的工作原理。基本上ARCore做了两件事,首先跟踪手机...
Monaco Editor 编辑器拷贝粘贴功能调用和获取选中文本
有时候需要在monaco editor外部调用编辑器的内置功能比如希望在页面主工具栏实现一些快捷操作。button
踏得网精选2016年度10大最佳HTML5动画
踏得网精选2016年度最酷最新的HTML5动画集,评选标准为:创意新颖度+实现技术难度+趣味程度。使用一些在线H5生成工具的作品,因其主要使用图片和CSS3套路动画,...
如何使用BabylonJS加载OBJ或STL模型
BabylonJS(也就是babylon.js,这是一个和three.js类似的WebGL开发框架),更多的用在游戏领域。
本文说明和演示如何使用babylon.js来加载一个标准3d模型文...WebGL、Asm.js和WebAssembly概念简介
随着HTML技术的发展,网页要解决的问题已经远不止是简单的文本信息,而包括了更多的高性能图像处理和3D渲染方面。这正是要引入WebGL、Asm.js和WebAssembly这些技...
如何使用CSS3合成模式(blend-mode)和滤镜(filter)实现彩色蜡笔(时光机)照片特效
在之前的文章中我们已经详细讲解过CSS3滤镜(filter,也可称之为过滤器)的工作方式,本文将实现一个当下流行的时光机相片特效实例来说明其实际用途。
我们...使用HTML5 Canvas实现的界面元素截屏功能
HTTP1.1协议现状、问题和解决方案
HTTP的现状最早的HTTP协议非常简单,只能用来传送文本,方法也只有GET,后来逐步发展到1.1,能够支持多种MIME格式数据(如文本、文件),支持GET,POST,HEAD,OPTI...
HTML5、Hybrid APP、Native APP对比和技术选型
HTML5和Native APP都很容易理解。为了获得HTML5的移植性和移动本地应用的高性能,搞出来一些混合APP的解决方案。比如Apache的Cordova(也就是以前的PhoneGap),...
WebGL入门教程4 - 使用纹理贴图(Texture Map)
3D建模和纹理贴图的关系就好比人体和皮肤(或着装)的关系,3D建模用来处理空间属性,而贴图适合用来处理细腻的表面属性。如果不使用贴图,而想在表面达到足够的...
更多...